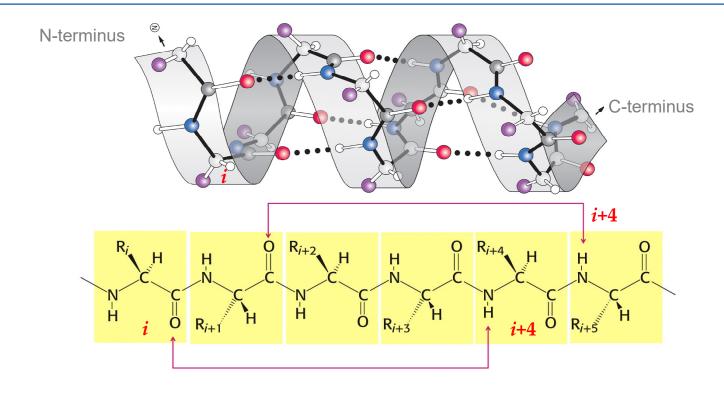
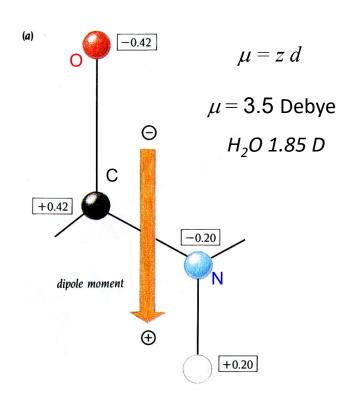

Proteins – Secondary structure

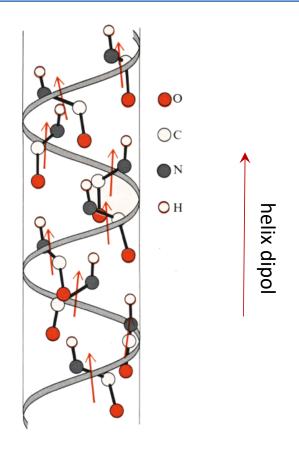
The alpha-helix



$$\begin{array}{c|c} H & R & H & O & H & R \\ \hline N & C & O & H & C & O \\ N & C & O & H & R & O \\ \end{array}$$

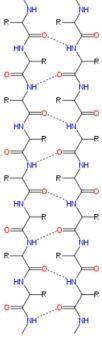
Both right- and left-handed helices are allowed.

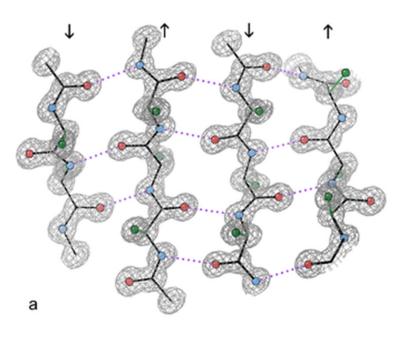

In proteins most helices are right-handed.


Hydrogen-bonding scheme for the α -helix

C=O of aa *i* -> **H-bond** with N-H of aa *i+*4

Helices are electrical dipoles made up of peptide bond dipoles




The beta-sheet

anti-parallel

parallel

X-ray structure of beta-sheet in catalase

What is the secondary structure of a protein?

Sequence:

MQIFVKTLTGKTITLEVEPSDTIENVKAKIQ DKEGIPPDQQRLIFAGKQLEDGRTLSDYNI QKESTLHLVLRLRGG

- measure the secondary structure of a protein?
- → Circular dichroism
- predict the secondary structure by sequence?
- → Statistical thermodynamics

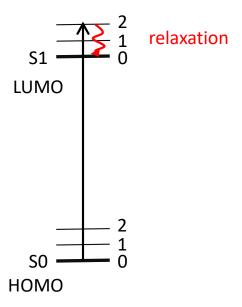
Absorption processes

Definition of light absorption:

a photon of energy

is absorbed by a molecule:

This results in:


Electron from a *binding* or *non-binding* MO switches to an *anti-binding* MO with higher energy than the ground state

The residence time in the HOMO is very short (ns)

Fate of the excited state:

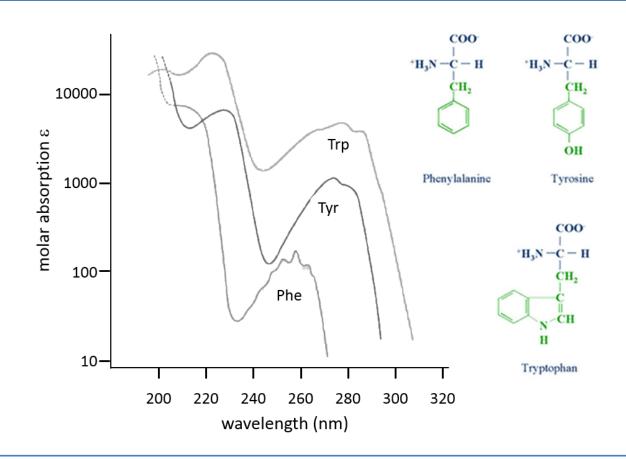
- internal conversion: heat
- emission of a photon: fluroescence, phosophorescence

Simple Jablonski diagram:

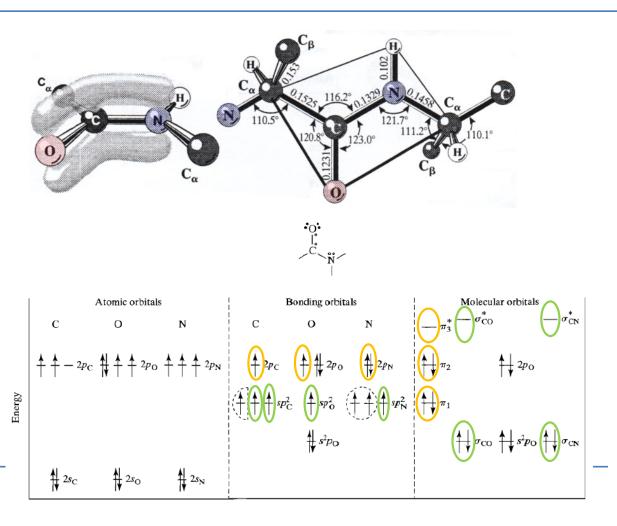
Beer Lambert's Law & Absorption Spectra of Aromatic Amino Acids

absorption

$$A = \log \frac{I_0}{I} = \varepsilon lc$$

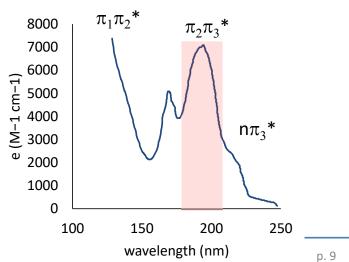

$$A = \varepsilon lc$$
 wi

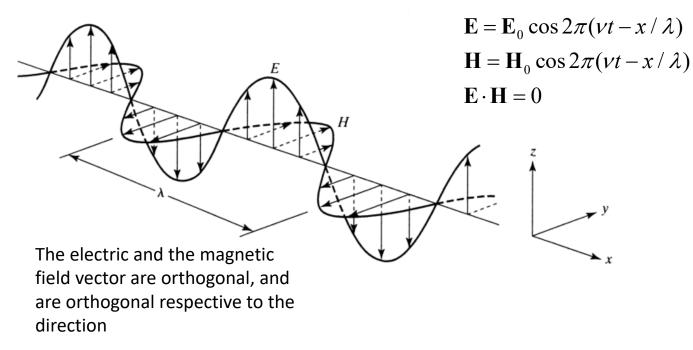
with
$$\varepsilon = \sigma N_a 10^{-3} \log e$$


Units: M⁻¹cm⁻¹

The extinction coefficient is wavelength dependent

$$A(\lambda) = \varepsilon(\lambda)lc$$

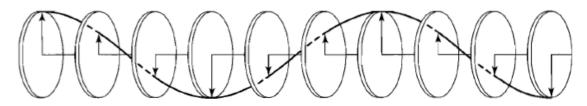

CD spectrosocopy: Optical properties of peptide bonds


proteins are optically active

peptide bond absorption:

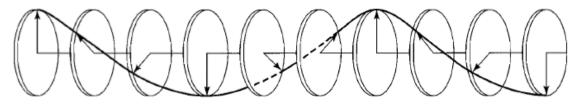
- $\pi \pi^*$ transition
- absorption band around 190 nm
- absorption properties influenced by asymmetric environment

Polarization of light



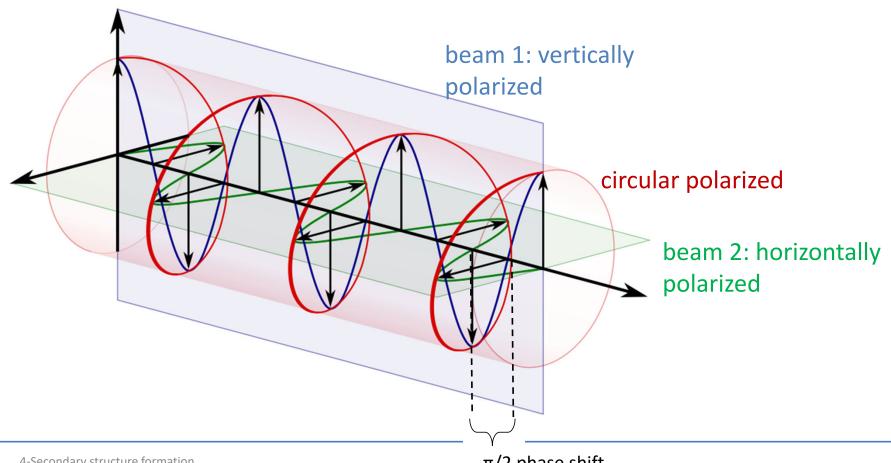
Polarization: Defined as the plane of oscillation of the electric field vector

Individual photons are always polarized


Linear and circular polarized light

Linear polarized light

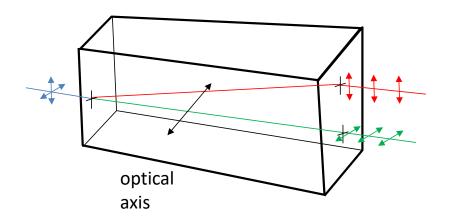
E vector lies in one defined plane


Circular polarized light

Elliptic polarized light (E II and E <u>I</u> different length)

E vector describes a helix in space helix can be right- or left-handed

Circular polarized light: Superposition of orthogonally polarized beams with $\pi/2$ phase shift

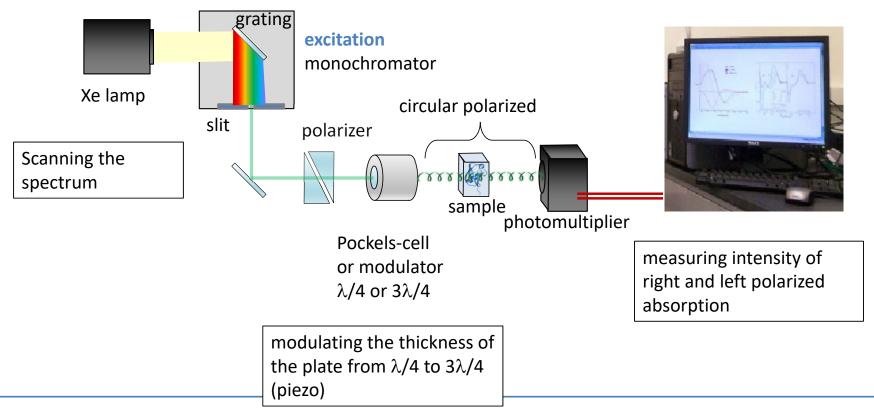


4-Secondary structure formation $\pi/2$ phase shift

Production of circular polarized light

Birefringence:

Property of crystals: Different refractive indices for differently polarized light


Example: Calcite (CaCO₃)

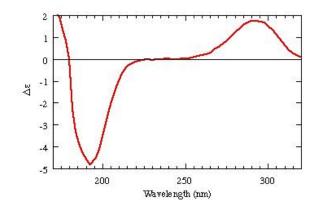
Interaction of circular polarized light with optically active compounds: CD Spectroscopy

Optically active compounds in solution exhibit birefringence if irradiated with circular polarized light dependent if the light is right-polarized (E₊) or left-polarized (E₋)

- The solution has different extinction coefficients \mathcal{E}_{+} and \mathcal{E}_{-} for right- and left-polarized light.
- This difference in absorption $\Delta \varepsilon$ is called the circular dichroism (CD) and can be measured for every wavelength
- An absorption spectrum specific for circular polarized light is measured similar to a UV spectrum
- Between λ = 180-250 nm information about protein secondary structure is obtained (far-UV CD)
- Between I = 250-300 nm a fingerprint for every folded protein is determined (near-UV CD)

Measuring a CD-Spectrum

CD measurements


Difference between right- and left-polarized absorption:

Ellipticity:
$$\psi_{ob}$$

$$\psi_{obs} = \frac{\left(E_{+} - E_{-}\right)}{\left(E_{+} + E_{-}\right)}$$

Example: d-10-camphorsulfonic acid in water

Extinction coefficient	[cm ⁻¹ M ⁻¹]	Molar ellipticity [d	eg cm² dmol-1]
ϵ_{285} (UV absorption)	34.5		
$(\varepsilon_{\rm L} - \varepsilon_{\rm R})_{290.5}$	2.36 x 10 ⁻³	$[\theta]_{290.5}$	7.8
$(\varepsilon_{\rm L} - \varepsilon_{\rm R})_{192.5}$	-4.72 x 10-3	$\left[\theta\right]_{192.5}$	-15.6
$(\varepsilon_{\mathrm{L}}\text{-}\varepsilon_{\mathrm{R}})_{290.5}/(\varepsilon_{\mathrm{L}}\text{-}\varepsilon_{\mathrm{R}})_{192.5}$	-2.0	$[\theta]_{290.5}/[\theta]_{192.5}$	-2.0

Units of CD spectroscopy

De -> all necessary information.

historical reasons: molar ellipticity

$$[\theta]_{\lambda}^{T} = \frac{100 \cdot \psi_{obs}}{c \cdot d}$$
 (grad cm² dmol²) with c: molar concentration d: pathlength (cm)

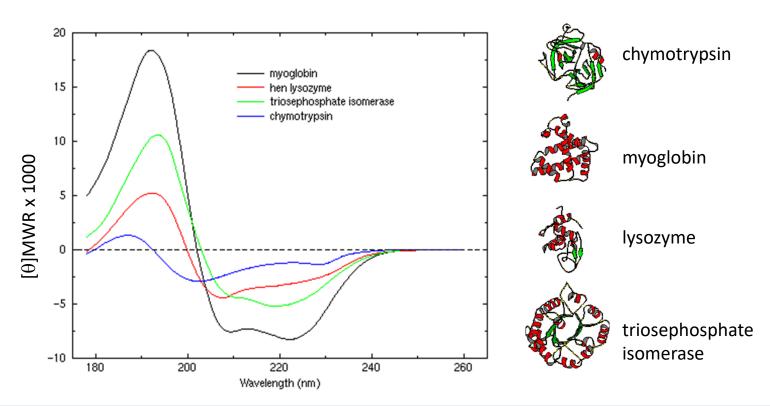
(grad cm² dmol⁻¹)

d: pathlength (cm)

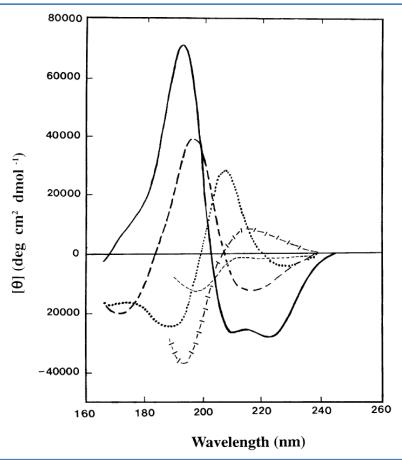
proteins: average molecular weight

$$M_0 = \frac{\text{MW protein}}{\text{No. amino acids}}$$

$$\psi_{obs} = \frac{\left(E_{+} - E_{-}\right)}{\left(E_{+} + E_{-}\right)}$$


$$\left[\theta\right]_{\lambda}^{T} = 3300 \cdot \Delta \varepsilon$$

average ellipticity per amino acid:


$$\left[\theta\right]_{MRW} = \frac{100 \cdot \psi_{obs}}{c \cdot d \cdot N_{\text{aminoacid}}} \quad \begin{array}{c} \text{(grad cm}^2 \\ \text{dmol}^{-1} \text{)} \end{array}$$

Far-UV CD spectroscopy in proteins

CD spectra of different proteins

Far-UV Basis spectra of secondary structure

basis spectra of secondary structure elements

- Solid line: α -helix
- long dashed line: anti-parallel β -sheet
- dotted line: type I β -turn
- cross dashed line: extended 3₁-helix or poly Pro II helix
- short dashed line: irregular structure

Kelly et al. BBA 1751, p 119, 2005

Determining the amount of secondary structure from a Far-UV CD spectrum

Conformation	CD-properties	
	nm	$[\theta]_{MRW}$
a-helix	193	+73000
	208	-35000
	222	-38000
b-sheet	198	+50000
	217	-8000
collagen	198	-50000
	220	+6000
random coil	200	-15000
	198	-20000

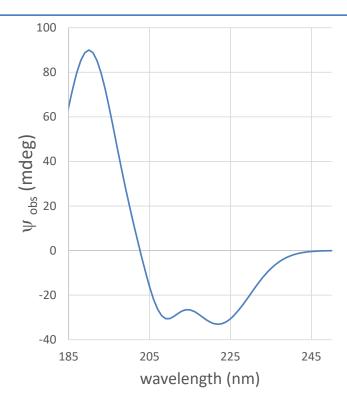
estimate amount of secondary structure:

$$\begin{split} \left[\theta\right]_{MRW} &= X_{coil} \left[\theta\right]_{coil} \\ &+ X_{\beta} \left[\theta\right]_{\beta} + X_{\alpha - helix} \left[\theta\right]_{\alpha - helix} \end{split}$$

with X being the fraction of residues in the indicated state

α -helix content determined by Far-UV CD

Conformation	CD-properties	
	nm	$[\theta]_{MRW}$
a-helix	193	+73000
	208	-35000
	222	-38000
b-sheet	198	+50000
	217	-8000
collagen	198	-50000
	220	+6000
random coil	200	-15000
	198	-20000


at 208 nm, the helix content can be calculated directly:

$$X_{a-helix} = \frac{[\theta]_{208} + 4000}{-31000}$$

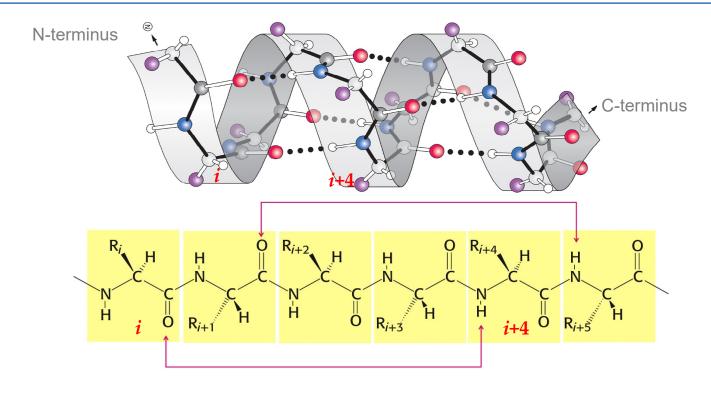
Greenfield & Fasman, Biochemistry 8, 1969

Quiz

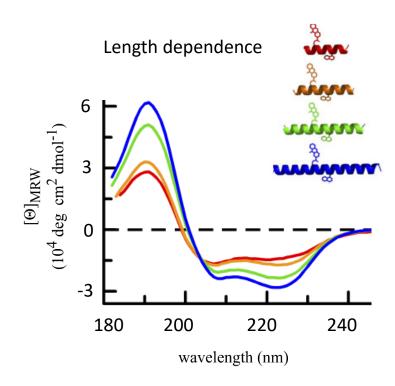
- you determine a CD spectrum for a small, alpha-helical protein (153 amino acids, MW 16950 Da).
- At a concentration of 0.17 mg/ml and 1mm cuvette length, you measure a the following data:
- What is the % of helix for this protein?

What is the secondary structure of a protein?

Sequence:


MQIFVKTLTGKTITLEVEPSDTIENVKAKIQ DKEGIPPDQQRLIFAGKQLEDGRTLSDYNI QKESTLHLVLRLRGG

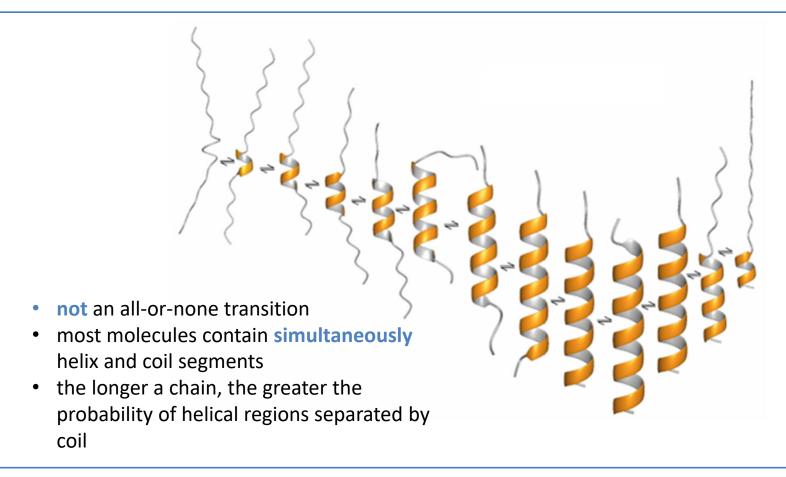
- Can we measure the secondary structure of a protein sample?
- Can we predict the secondary structure of a protein by the sequence?


- → Circular dichroism measurement
- → Statistical thermodynamics

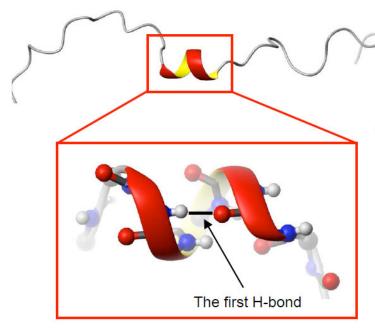
Hydrogen-bonding scheme for the α -helix

In the α -helix, the C=O group of amino acid i forms a hydrogen bond with the N-H group of residue i+4

Helicity increases with increasing peptide length


Intensity of CD bands increase with increasing α -helix length

This is due to coupled oscillators in a long helix


Thus, for a helix of given length, the maximal ellipticity at 208 nm can be approximated by:

$$[\theta]_{208,helix} = -36000(1-3.5/n)$$

helix - coil transition

Nucleation, the first H-bond

Nucleation of alpha helix

the conformations of 3 consecutive residues have to be fixed without proper H-bond compensation

high entropic cost associated

nucleation is rare and disfavored

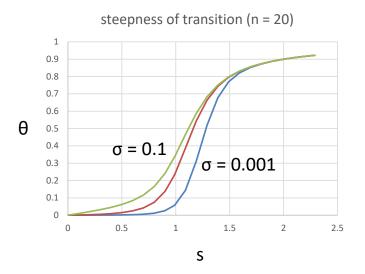
Mechanism of helix formation

Calculating the fractional helicity θ

Use of partition function Q

Definition of the probability p(k): chain with k helical units

$$p(k) = \frac{(n-k+1)\sigma s^k}{Q}$$

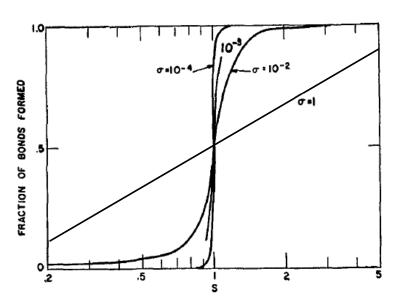

Fractional helicity

$$\theta = \frac{\langle k \rangle}{n} = \frac{\sum_{k=1}^{n} k \cdot p(k)}{n} = \frac{\sum_{k=1}^{n} k(n-k+1)\sigma s^{k}}{nQ}$$

$$= \frac{S\frac{\partial Q}{\partial s}}{nQ} = \frac{S\frac{\partial Q}{\partial s}}{n(1 + [\sigma s^{2}/(s-1)^{2}][s^{n} + ns^{-1} - (n+1)]} \quad \Rightarrow \quad \theta = \frac{\sigma s}{(s-1)^{3}} \left(\frac{ns^{n+2} - (n+2)s^{n+1} + (n+2)s - n}{n\{1 + [\sigma s/(s-1)^{2}][s^{n+1} + n - (n+1)s]\}} \right)$$

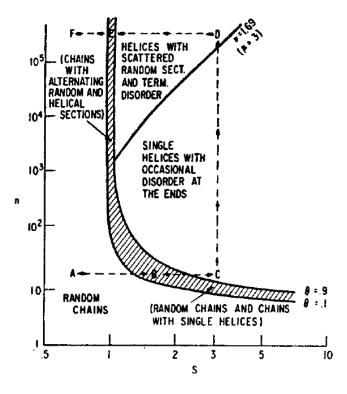
Helix nucleation parameter σ controls transition cooperativity

$$\theta = \frac{\sigma s}{\left(s-1\right)^3} \left(\frac{n s^{n+2} - (n+2) s^{n+1} + (n+2) s - n}{n \left\{1 + \left[\sigma s / (s-1)^2\right] \left[s^{n+1} + n - (n+1) s\right]\right\}} \right)$$



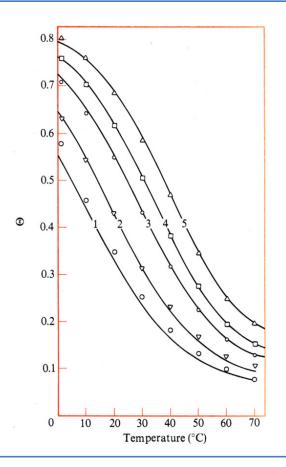
Reason:

for s > 1, the smaller the value of σ is, the greater the value of k needs to be to generate significant values in terms of the form σs^k


However: for long peptides, single-sequence approx. breaks down.

Full calculations (end effects, multiple helices allowed)

large effect of the nucleation parameter


determines **steepness /cooperativity** of the transition

Zimm Bragg, J Chem Phys 1959

3-Protein folding equilibria p. 31

Dependence on the residue type: Host-guest studies

Lines: Theory

Symbols: L-alanine guest in polyhydroxypropyl-glutamine

for very long helices:

1: n = 422, 14% alanine

2: n = 880, 21% alanine

3: n = 1010, 32% alanine

4: n = 1413, 38% alanine

5: n = 1102, 49% alanine

Platzer et al., Macromolecules 1972

Experimental data: s-values & helical propensities

Table 2. Helix propensity values measured at 273 K

Residue	s-Value ^a	w-Value ^a	-RT ln(w) (kcal/mol)	ΔΔ <i>G</i> (kcal/n	
Ala	1.54	1.61	-0.258	-1.88	•
Arg+	1.1 ^f	1.2 ^f	-0.047	-1.67	
Leu	0.92	0.96	0.022	-1.60	
Lys+	0.78	0.82	0.108	-1.52	
Glu°	0.63 ^b	0.66 ^b	0.225	-1.40	
Met	0.60	0.63	0.251	-1.37	
Gln	0.53	0.56	0.314	-1.31	
Glu-	0.43 ^b	0.45 ^b	0.433	-1.20	
Ile	0.42	0.44	0.445	-1.18	
Tyr	0.37-0.50°	0.39-0.53°	0.344°-0.511	-1.28° to	-1.11
His ⁰	0.36 ^d	0.38d	0.525	-1.10	
Ser	0.36	0.38	0.525	-1.10	
Cys	0.33	0.35	0.570	-1.06	
Asn	0.29	0.31	0.635	-1.00	
Asp-	0.29e	0.31e	0.635	-1.00	
Asp ⁰	0.29e	0.31e	0.635	-1.00	
Trp	$0.29^{\circ}-0.36$	0.30°-0.38	0.525-0.653c	-1.10 to	-0.97°
Phe	0.28	0.29	0.672	-0.95	
Val	0.22	0.23	0.797	-0.83	
Thr	0.13	0.14	1.07	-0.56	
His+	0.06 ^d	0.06 ^d	1.53	-0.10	
Gly	0.05	0.05	1.62	0	•
Pro	≈0.001	≈0.001	≈4	>5	4

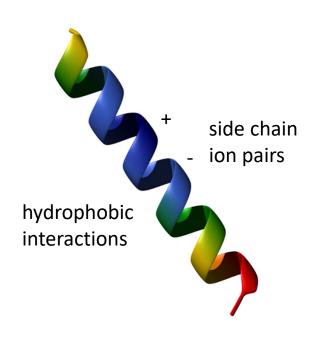
Chakrabartty, Kortemme, Baldwin, Protein Sci 1994

Measured from fit of theory to host-guest measurements

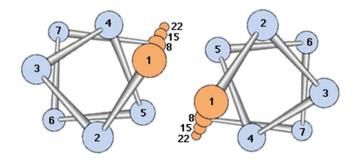
allows now the **prediction** of the helicity of a given amino acid sequence

^a Values obtained by applying Lifson-Roig theory modified to include either N-capping or charged group-helix macrodipole interactions. Conditions: 273 K, 1.0 M NaCl for uncharged residues and Lys, and 273 K, 10 mM NaCl for Arg, Asp, Glu, and His.

b Values from Scholtz et al. (1993).

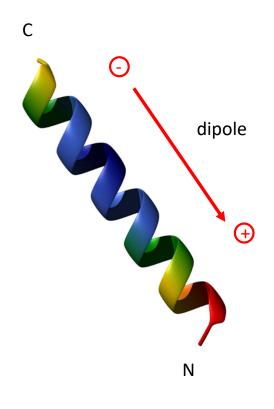

^c Values corrected for error in fraction helix measurement caused by aromatic contribution.

^d Values from Armstrong and Baldwin (1993).


^e Values from Huyghues-Despointes et al. (1993).

Values from Huyghues-Despointes and Baldwin (unpubl.).

Side chain interactions: Stabilizing and destabilizing


The helical wheel:

Mapping side chains on the same face of the helix

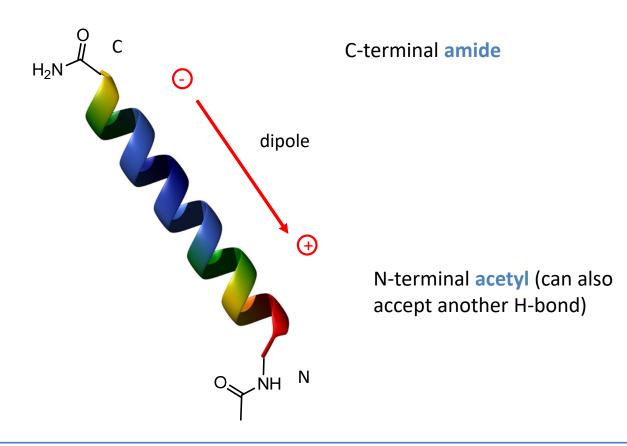
interactions possible stabilizing or destabilizing

Interactions with the helix-dipole

Negative charges at the

C-terminus

or

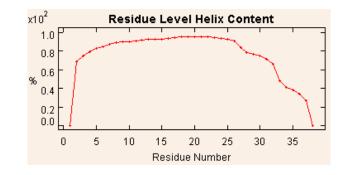

positive charges at the

N-terminus

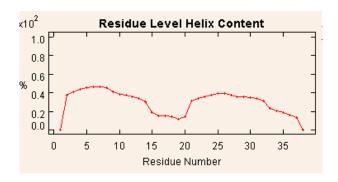
destabilize helices

Capping groups can overcome this effect

Capping groups in isolated helices

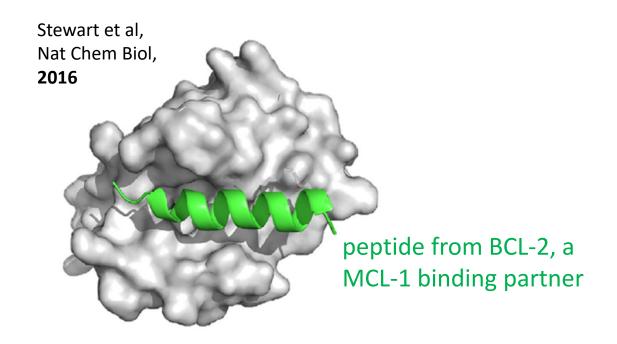


Helix prediction: AGADIR


Secondary structure prediction based on helix-coil theory

takes into account further empirical parameters

Peptide 1
AAAAAAAQQAAAAQWAAA
AAAAAAAQQAAAAQWAAA



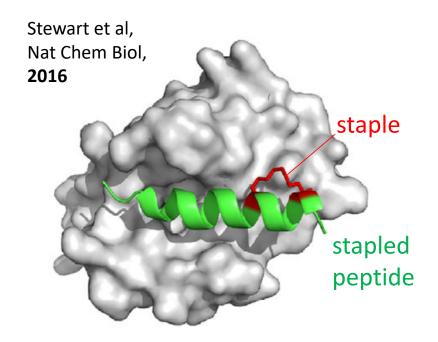
Peptide 1AAAAAAAQQAAAAQWAGG
AAAAAAAQQAAAAQWAAA

Muñoz, V. & Serrano, L. (1994a), Nature: Struct. Biol. 1, 399-409

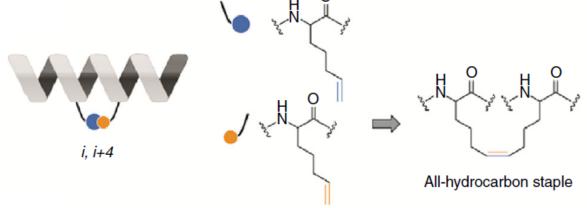
How to stabilize helix enough to make an efficient drug?

MCL-1: resistance factor in human cancer → prevents apoptosis of cancer cells

Targeting protein-protein interactions:


- very difficult with small molecules
- peptides are a possible solution

→ Problems:


structural stability, cell permeability, stability to proteases

→ Solution: peptides with stabilized structure (a-helix)

Approach: 'Stapling' the peptides

MCL-1: resistance factor in human cancer → prevents apoptosis of cancer cells

Araghi & Keating, Curr Opin Struct Biol 2016

- synthesis via ring-closure metathesis
- strong increase in helicity → why?
- better cell permeability and serum stability

→ drug like properties possible

Summary

- Using simple assumptions and statistical thermodynamics the cooperative conformational change from coil to helix can be analyzed
- The cooperativity of the transition depends on the nucleation parameter σ
- Experiments produced values of the elongation parameter s for all amino acid residues, these serve as a predictor of helix stability
- Charges at helix termini stabilize the helix if they favorably interact with the helix dipole, otherwise the weaken the helix
- Capping motifs stabilize helices through hydrogen bonding with termini, optimal charges, conformations